US009444694B1

a2 United States Patent

Sweeting

US 9,444,694 B1
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

VIRTUAL CLUSTERS TO PROVIDE FAULT
CONTAINMENT

Applicant: TIBCO Software Inc., Palo Alto, CA

(US)
Inventor: Steven Sweeting, Oakland, CA (US)
Assignee: TIBCO Software Inc., Palo Alto, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 530 days.

Appl. No.: 13/782,958

Filed: Mar. 1, 2013

Int. CL

GOG6F 15/173 (2006.01)

HO4L 12724 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ..o HO04L 41/50 (2013.01); HO4L 67/16

(2013.01)

(58) Field of Classification Search
CPC ittt HO04L 41/50
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
5,201,000 A *

7,321,926 B1*
8,429,097 B1*

4/1993 Matyas et al. ... 380/30
1/2008 Zhang et al. 709/220
4/2013 Sivasubramanian et al. .. 706/12

* cited by examiner

Primary Examiner — Yves Dalencourt
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

Techniques to process service requests are described herein.
In various embodiments, an identifier data associated with a
service consumer with which a service request is associated
is used to determine a subset comprising fewer than all
members of a set of service instances. A selected service
instance is selected from among the service instances in the
subset to perform the service request.

16 Claims, 6 Drawing Sheets

(Start)

Extract unique identifier from request

h 4

Use unique identifier to determine
instance index values

|~ 504

A 4

Use instance index values to determine

service instances included to subset of

service instances eligible to be selected
to service request

|- 506

End

U.S. Patent

US 9,444,694 B1

Sep. 13, 2016 Sheet 1 of 6
102 104 106
\ \ /

1 1 T
Service Service . Service
Consumer Consumer Consumer

Task |~ 110
Distribution
Node
Service Service Service
Instance 1 Instance 2 .- Instance n
112 114 116

FIG. 1

U.S. Patent

210

Service
instance

208

Service

instance

Sep. 13, 2016

Sheet 2 of 6

Service
instance

N Service \l
N < instance I/
1™ J
/ N /1
| ~— -7
/ /
/
/ 206 /l\ 214

Service
instance

FIG. 2

US 9,444,694 Bl

U.S. Patent Sep. 13,2016 Sheet 3 of 6 US 9,444,694 B1

Receive an indication of the number of
service instances in pool, number of 302
instances to be available to a service

consumer, and key or other value to be
used to determine which instances to
be included for a particular consumer

l

Configure system to limit service
consumers to deterministically
identified subset of service instances

End

FIG. 3

U.S. Patent Sep. 13,2016 Sheet 4 of 6 US 9,444,694 B1

Geceive requesD

Determine service instances included in|_~ 402
subset available to service this request

l

Select and route request to a service L7 404
instance selected from the determined
subset

End

FIG. 4

U.S. Patent

Sep. 13, 2016 Sheet 5 of 6

=D
|

US 9,444,694 B1

Extract unique identifier from request

l

Use unique identifier to determine
instance index values

L~ 504

l

Use instance index values to determine

service instances included to subset of

service instances eligible to be selected
to service request

_~ 506

End

FIG. 5

U.S. Patent Sep. 13,2016 Sheet 6 of 6 US 9,444,694 B1

Create an ordered list (or other 7~ 601
data structure) of available
service instances

l

Determine instance index value | ~ 602
—»| in the range of the number of
available services

l

Add corresponding service
instance to set; update “already
included” list; and remove from

list of available services

612

No

Yes

End

FIG. 6

US 9,444,694 B1

1

VIRTUAL CLUSTERS TO PROVIDE FAULT
CONTAINMENT

BACKGROUND OF THE INVENTION

A major challenge with service-oriented architecture
(SOA) based systems, or other systems in which the service
requests of service consumers may be fulfilled by one or
more of a plurality of instances of a service, is preventing a
rouge or malformed consumer or request impacting service
availability or performance of the service for other consum-
ers. There are a variety of ways service consumers can cause
problems either illicitly or more often accidentally. Mal-
formed messages and increased message volume are two of
the most common problems; these easily can overwhelm
server components.

Load balancers typically handle increases in message
volume by distributing requests across available servers. If
this increase is still beyond what all instances can support
availability and performance of the service to other consum-
ers is adversely affected.

Consider also a malformed message which blocks or
slows down a service component. Today’s load balancers
may retry a failed request against a second or third redundant
service instance. Unfortunately this approach can cascade a
failure across all services. The request that brings down one
node is sent to the second node which brings that down and
so on. One financial institution calculated that 90% of their
service downtime one year was due to problems with single
consumers. Sometimes it was a single request that broke a
single instance causing it to go offline. The single request
was resubmitted to active instances which in turn brought
them down. Other times a consumer might have been
misconfigured to send a unmanageable number of requests
that were distributed across and overwhelmed all service
instances simultaneously.

There are many products in the market that help with
detection via known attack vectors such Denial of Service
attacks and malformed XML requests. Generally, these
require expensive continued communication between all
load balancers, as well as separate configuration or logic for
each specific vulnerability. Because of their propensity to
failover to subsequent instances of the service, they also
have difficulty with scenarios where requests or consumers
bring down a service instance due to a defect in the service.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating an embodiment of
a service-based system.

FIG. 2 is a block diagram illustrating an embodiment of
a service-based system configured to contain faults.

FIG. 3 is a flow chart illustrating an embodiment of a
process to contain faults.

FIG. 4 is a flow chart illustrating an embodiment of a
process to select a service request instance to service a
request.

FIG. 5 is a flow chart illustrating an embodiment of a
process determine a subset of service instances.

FIG. 6 is a flow chart illustrating an embodiment of a
process to determine a subset of service instances.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-

15

20

40

45

55

60

65

2

tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

Limiting service consumer access to a specific subset of
service instances is disclosed. Each consumer’s requests are
distributed among service instances comprising an associ-
ated subset of service instances. In various embodiments, the
subset may be determined in advance or dynamically as
requests are received, e.g., at a load balancer or other request
routing node. Using this approach, if a service request from
a particular service client is malformed, or otherwise causes
service instances that attempt to fulfill the request to crash or
otherwise become unavailable, then the effect is limited to
service instances that are included in the subset made
available to that service consumer.

FIG. 1 is a block diagram illustrating an embodiment of
a service-based system. In the example shown, service
consumers represented by service consumers 102, 104, and
106 send service requests via network 108 to a task distri-
bution node 110, such as a load balancer. In the typical prior
art approach, the task distribution node 110 would direct
each received request to an appropriate one of a plurality of
service instances, represented in FIG. 1 by service instances
112, 114, and 116, which may comprise, for example,
distinct physical systems and/or distinct logical instances of
the service one or more of which may be running on a same
physical machine. Applying techniques disclosed herein, by
comparison, for a given request only a subset of the service
instances represented by instances 112, 114, and 116 are
eligible to be selected to service that request. For example,
in some embodiments an attribute value, identifier, and/or
other data associated with the service consumer that sent the
request, such as the source IP address, is used to determine
a subset of service instances associated with that service
consumer. In some embodiments, the service consumer may
be a web-based application, sending the request on behalf of
a user of the web-based application. In some embodiments,
an application identifier or other identifier associated

US 9,444,694 B1

3

uniquely with the application may be used to determine the
subset of service instances from which a service instance to
service a given request received from an application will be
selected. The task distribution node 110 selects from the
determined subset of eligible instances a service instance to
perform the request.

FIG. 2 is a block diagram illustrating an embodiment of
a service-based system configured to contain faults. In the
example shown, service instances 202, 204, 206, 208, and
210 are available to service requests from service consum-
ers. To contain faults, in this example a first subset of
services instances 212, including in this example services
instances 102 and 104, is defined and associated with a first
set of one or more service consumers. A second subset of
service instances 214 includes service instances 204 and
206, and is associated with a second set of one or more
service consumers. Likewise, other combinations of two (or
more or fewer) service instances may be associated with still
other sets of one or more service consumers. In this way, for
example, a malformed service request from a service con-
sumer associated with the first subset of service instances
212 may cause service instances 202 and 204 to crash, but
the remaining service instances will be unaffected. In the
example shown, service consumers associated with the
second subset 214 of service instances would still have
service instance 206 available to service their requests.

FIG. 3 is a flow chart illustrating an embodiment of a
process to contain faults. In the example shown, an indica-
tion is received of (1) a number of service instances avail-
able to service requests, (2) a number of instances to be
made available to a given service consumer, and (3) a key or
other value to be used to determine which specific service
instances are to be made available to a given service
consumer (302). For example, an indication may be received
that there are 100 service instances and that each service
consumer should have access to 5 instances, based for
example on the service requestor’s IP address. In some
embodiments, a more preferred service consumer may be
allocated a larger number of service instances in the subset
of service instances made available to service their requests
than one or more other service consumers, rather than
having the same number of service instance being included
in every subset. The system is configured, e.g., at a load
balancer or other task distribution node such as task distri-
bution node 110 of FIG. 1, to limit each service consumer to
a corresponding subset of service instances (304). In various
embodiments, the subset of service instances available to
service a given request is determined, e.g., dynamically at
service request time, in a manner such that over time
requests from the same service consumer will be routed to
services instances selected from the same subset of service
instances.

FIG. 4 is a flow chart illustrating an embodiment of a
process to select a service request instance to service a
request. In the example shown, when a service request is
received, the service instances that are included in the subset
of service instances available to be selected to perform the
service request are determined (402). For example, the
subset of service instances associated with a sender of the
service requests, e.g., as indicated by source IP address, is
used to determine the available subset. In some embodi-
ments, the respective subsets may be computed in advance,
and at service request time a lookup may be performed to
identify the subset of service instances available to be
selected from to determine a service instance to perform the
request. A specific service instance to perform the request is
selected from the determined subset and the request is routed

10

15

20

25

30

35

40

45

50

55

60

65

4

to the selected instance for processing (404). In various
embodiments, well known load balancing and/or other algo-
rithms may be used to select a specific service instance from
among the service instances in the subset of instances
determined to be included in the subset of service instances
eligible to be selected to service the request.

FIG. 5 is a flow chart illustrating an embodiment of a
process determine a subset of service instances. In various
embodiments, 402 of FIG. 4 includes the process of FIG. 5.
In the example shown, a unique identifier is extracted from
the service request (502). For example, in some embodi-
ments, a source [P address, application identifier, or other
unique identifier associated with the service consumer that
sent the service request is extracted. The extracted unique
identifier is used to determine service instance index values
corresponding to service instances to be included in the
subset (504). The service instance index values are used to
determine the subset of service instances eligible to be
selected to perform the service request (506).

In some embodiments, for example, the service consum-
er’s IP address or another unique identifier may be used to
compute a value, such as a hash, that in turn is used to seed
a pseudorandom number generator. Values generated based
on the seed would be used as or mapped to service instance
index values of service instances to be included in the
subset. Using the unique identifier as a seed in this way
ensures the same subset of service instances will be deter-
mined for the same service consumer as subsequent requests
are received, thereby ensuring that the effect of faults
associated with a given service consumer and/or request are
limited to the same subset of service instances.

In some embodiments, the subset of services associated
with a service consumer may be determined in advance and
cached or otherwise stored. At the time a request is received,
an index is computed based on a unique identifier, and the
index is used to perform a lookup to determine the subset of
service instances available to be selected to perform the
service request. In some embodiments, if a set of service
instances associated with a given index is not found, a subset
of service instances is determined dynamically, as described
above. In some embodiments, the dynamically determined
subset may be added to a cache or other store of previously-
determined subsets.

FIG. 6 is a flow chart illustrating an embodiment of a
process to determine a subset of service instances. Initially
an ordered list (or other data structure) of available service
instances is created (601). In the example shown, a first
service instance index value is determined (602) in the range
of the number of available service instances. A correspond-
ing service instance is added to a subset of service instances
associated with a service consumer and added to a list (or
other data structure) of service instance index values that
have already been added to the subset (604). The corre-
sponding service is also removed from the initial list of
available services reducing its size by one. A next service
instance index value is received (or determined) (602) from
the now available service instances. Processing continues
until the subset has been populated with the prescribed
number of service instances (612).

For example, when choosing 4 items from 100 the first
item is selected from the pool of 100 items, the second from
99 items and so on. Consider the following example with the
index values 55, 22, 55, 96 leading to a subset of items 55,
22, 57, 99.

US 9,444,694 B1

5

Range Index Available Pool Select item Subset

0-99 55 0...99 55 (from 0 to 99) 55

0-98 22 0...54,56...99 22 (from O to 98) 55,22

0-97 55 0...21,23...54, 57 (position 55) 55,22, 57
56...99

0-96 96 0...21,23...54, 99 (position 96) 55,22, 57,99
56,58 ...99

In some embodiments, to minimize memory processing
when an item is removed from the pool (e.g. 55), rather than
higher items shuffling down, position 55 is replaced by the
last item in the available pool. An associative array is used
in some embodiments—e.g., to record that position 55 is
now filled by “99”. For example:

Range Index Associative Array Select item Subset
0-99 55 55 55

0-98 22 {55, 99} 22 55,22
0-97 55 {55, 99}, {22, 98} 99 (position 55) 55,22,99
0-96 96 {55, 97}, {22, 98} 96 (position 96) 55, 22, 99, 96

Note that this approach yields a different subset for the
same input indices as first explored above. However, this
approach still gives provably uniformly distinct subsets
given uniformly distributed keys.

In another embodiment, appropriate for small subset
sizes, a linear search of the subset determined so far is made,

alleviating the need to build an associative array. For |

example, referring to the third row of the table above, with
the second occurrence of index 55 a linear search through
the partial subset would be performed to determine that 55
had already been chosen as position 1 (first row above). The
index for the third position in this example would be
generated using the formula (n—position already filled
using this index), or 100-1, or 99.

In many embodiments, the algorithm to map a service
consumer or other unique identifier to a corresponding
subset of service instances finds for each unique identifier a
corresponding ordered subset of service instances. While
ordered subsets are used in various embodiments described
herein, ordered subsets are not required. However, ordered
subsets may in various embodiments be easier to derive
from an input key.

A permutation is a particular arrangement of items. A set
of 6 items can be arranged in 720 different permutations. For
position 1 choose one of 6, for position 2 choose one of 5
left, for position 3 choose one of 4 and so on. The formula
is thus 6*5%4*3*2 or 6 factorial.

n items can be arranged in n! ways

A kpermutation is an ordered subset of items. It is a set of
k non-repeating items selected from a larger pool of n. From
a pool of 6 three items can be arranged 120 different ways.
For the first item choose one of 6, for the second, one of 5
and the third one of 4. The formula is 6*5%*4 or 6 factorial
divided by 4 factorial.

k ordered items from n can be arranged in

n!
(n—fk)!

way

A ksubset is an unordered subset of items, a unique
combination of k non-repeating items from n. From a set of
6 items we can choose a 20 different subsets of three.

10

15

25

45

50

6

k items from n can be chosen in

n!
(n—k)!xk!

way.

To minimize overhead potentially on each request in
various embodiments the load balancer or other task distri-
bution node is configured to quickly determine the target
instance or the set of target instances. To support arbitrarily
large pool sizes, time and memory demands are O(n) or less
in some embodiments.

In some embodiments, all unique combinations (ksubsets)
are generated during initialization and then for each request
alook up is performed to determine a particular combination
using a modulus of the hashed key. Lookup time is O(1) but
memory and setup time is

{
O(W)-

Selecting only 4 nom a pool of 100 requires calculating and
storing almost 4 million unique combinations.

In some embodiments, an O(k) approach as described
herein involves creating the subset of items (i.e., a subset of
k items from a total set of n items) on demand.

In some embodiments, a single hash is used to determin-
istically generate a combination of items. That is, one
number, rather than k numbers, is used. In some embodi-
ments, this is accomplished by treating the hash (e.g., of the
service consumer unique identifier or other identifier) as a
concatenated key of k numbers.

While specific algorithms are described by way of
example, in various embodiments one or more other and/or
different algorithms may be used to determine a subset of
service instances eligible to be selected to service a given
service request. In various embodiments, an algorithm that
is computationally efficient, given available resources, and
which identifies the same subset of service instances (pro-
vided the overall set has not changed) for the same input
(e.g., service consumer unique identifier and/or value com-
puted based thereon) may be used.

In various embodiments, the task distribution node 110 of
FIG. 1 may be duplicated for fault tolerance. Since in
various embodiments the subset selection algorithm is state-
less, these nodes do not need to communicate with each
other.

Using techniques disclosed herein, the effects of a fault
associated with a particular service request and/or service
consumer may be contained to a subset of service instances,
enabling other service instances not in the affected subset to

5 remain available, e.g., to continue to service requests from

60

65

other service consumers.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A method of processing service requests, comprising:

receiving, at a load balancer or other service request
distribution node, a service request;

US 9,444,694 B1

7

extracting an identifier data from the service request,
wherein the identifier data includes at least an Internet
Protocol (IP) address associated with a service con-
sumer;

using the identifier data associated with the service con-

sumer with which the service request is associated to
determine a total number of service instances of a set of
service instances to be made available to service
requests associated with the service consumer and to
determine which service instances are to be included in
a subset of service instances, wherein the subset com-
prises fewer than all members of the set of service
instances and corresponds to the total number of ser-
vice instances to be made available to service requests
associated with the service consumer; and

selecting from among the service instances in the subset

a selected service instance to perform the service
request.

2. The method of claim 1, wherein using the identifier data
associated with the service consumer with which the service
request is associated to determine which service instances
are to be included in the subset of service instances includes
computing a key based at least in part on the identifier data
and using the key to look up one or more service instance
index values associated with the key.

3. The method of claim 1, wherein using the identifier data
associated with the service consumer with which the service
request is associated to determine which service instances
are to be included in the subset of service instances includes
computing a key based at least in part on the identifier data
and using the key to determine dynamically one or more
service instance index values associated with the key.

4. The method of claim 3, wherein using the key to
determine dynamically one or more service instance index
values associated with the key includes using at least a
portion of the key to generate a random number.

5. The method of claim 4, wherein using at least a portion
of the key to generate a random number includes using said
at least a portion of the key to seed a pseudorandom number
generator.

6. The method of claim 1, wherein the subset includes a
prescribed number k of service instances out of a broader
population of n service instances.

7. The method of claim 1, wherein using the identifier data
associated with the service consumer with which the service
request is associated to determine which service instances
are to be included in the subset comprising fewer than all
members of the set of service instances is performed using
an algorithm that ensures a same permutation of services
instances is included in the subset as would have been
determined for a prior service request, if any, from the same
service consumer, absent changes in the set of service
instances.

8. The method of claim 1, wherein using the identifier data
associated with the service consumer with which the service
request is associated to determine which service instances
are to be included in the subset of service instances further
includes iteratively choosing a service instance from an
available pool of service instances that have not already
been chosen to be included in the subset.

9. The method of claim 8, further comprising adding an
index or other value associated with each service instance to
be included in the subset to a list of service instances that
have already been chosen to be included in the subset.

10. The method of claim 9, further comprising checking
the list, for each iteration after a first iteration of choosing
the service instance to be included in the subset, to deter-

10

15

20

30

35

40

45

50

55

[
<

65

8

mine whether the next selected service instance index or
other value has already been included in the subset.

11. A service request distribution system, comprising:

a communication interface configured to receive data

associated with a service request; and

a processor coupled to the communication interface and

configured to:

extract an identifier data from the service request,
wherein the identifier data includes at least an Inter-
net Protocol (IP) address associated with a service
consumer;

use the identifier data associated with the service con-
sumer with which the service request is associated to
determine a total number of service instances of a set
of service instances to be made available to service
requests associated with the service consumer and to
determine which service instances are to be included
in a subset of service instances, wherein the subset
comprises fewer than all members of the set of
service instances and corresponds to the total number
of service instances to be made available to service
the service request associated with the service con-
sumer; and

select from among the service instances in the subset a

selected service instance to perform the service request.

12. The system of claim 11, wherein the processor is
configured to use the identifier data associated with the
service consumer with which the service request is associ-
ated to determine which service instances are to be included
in the subset of service instances at least in part by com-
puting a key based at least in part on the identifier data and
using the key to look up one or more service instance index
values associated with the key.

13. The system of claim 11, wherein the processor is
configured to use the identifier data associated with the
service consumer with which the service request is associ-
ated to determine which service instances are to be included
in the subset of service instances at least in part by com-
puting a key based at least in part on the identifier data and
using the key to determine dynamically one or more service
instance index values associated with the key.

14. The system of claim 11, wherein the subset includes
a prescribed number k of service instances out of a broader
population of n service instances.

15. The system of claim 11, wherein the processor is
configured to determine the subset comprising fewer than all
members of the set of service instances at least in part by
choosing, iteratively a service instance from an available
pool of service instances that have not already been chosen
to be included in the subset.

16. A computer program product to process service
requests, the computer program product being embodied in
a tangible, non-transitory computer readable storage
medium and comprising computer instructions for:

receiving a service request;

extracting an identifier data from a service request,

wherein the identifier data includes at least an Internet
Protocol (IP) address associated with a service con-
sumer;

using the identifier data associated with the service con-

sumer with which the service request is associated to
determine a total number of service instances of a set of
service instances to be made available to service the
service request associated with the service consumer
and to determine which service instances are to be
included in a subset of service instances, wherein the
subset comprises fewer than all members of the set of

US 9,444,694 B1
9 10

service instances and corresponds to the total number
of service instances to be made available to service the
service request associated with the service consumer;
and

selecting from among the service instances in the subset 5
a selected service instance to perform the service
request.

